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S T R E S S - S T R A I N  STATE OF A N  A N I S O T R O P I C  P L A T E  W I T H  

C U R V I L I N E A R  C R A C K S  A N D  T H I N  R I G I D  I N C L U S I O N S  

V. N. Maks imenko  and  G. V. Nedogibchenko  UDC 539.3 

A mixed problem of linear elasticity for an infinite anisotropic plate with cuts and thin un- 
deformable inclusions located along arbitrary open smooth curves is solved with the use of 
complex potentials. Special representations of the solutions are constructed and a governing 
system of singular integral equations is obtained. A numerical algorithm for determining the 
stress-strain state of the plate, including the stress-intensity factors at the tips of cuts and 
rigid inclusions, is proposed. Calculation results are given. 

In t roduc t i on .  In the structures in service, brittle fracture generally begins near the technological or 
constructional stress concentrators, in particular cuts or rigid pointed inclusions. One method of determining 
the elastic and limit equilibrium of deformable solids with pointed inclusions and of studying the mutual effect 
of closely located inclusions and cuts is the method of singular integral equations. Berezhnitskii, Panasyuk, 
and Stashchyuk [1] proposed a system of these equations to study the stress-strain state of an isotropic plate 
with a finite number of curvilinear rigid inclusions and cuts under various force actions. For some cases, they 
gave exact or asymptotic formulas (obtained with the use of the small parameter for large distances between 
the defects) and developed numerical algorithms for calculating the stress-intensity factors at the tips of 
cracks and inclusions. Sil'verstov and Shumilov [2] studied the stress-strain state of a packet of isotropic 
plates rigidly connected along the curves. 

Maksimenko et al. [3-6] developed methods of analyzing the stress-strain state of anisotropic plates 
with complex cuts and of plates with cuts, holes, and rectilinear elastic locks. In this paper, the general 
representations of solutions for the problem of interaction between cuts and thin undeformable inclusions 
are constructed under the following assumptions: the objects are located along smooth open curves and 
do not touch each other and the contact between the cut edges is excluded. The problem is reduced to a 
system of singular integral equations effectively solved by numerical methods. The advantage of the proposed 
approach is the unified form of integral equations for the contours of cuts and inclusions, which simplifies 
the development of an algorithm of numerical solution. Results of numerical analysis of a number of new 
problems for anisotropic and isotropic (the limiting transition in anisotropy parameters is employed) plates 
are given and compared with the existing solutions. The high accuracy of the algorithm is shown. 

Fo rmula t ion  of  the  P rob lem.  We consider rectilinear-anisotropic elastic plate of constant thickness 
*r r162 and Tx~ are applied at infinity. that occupies the plane z = x + iy. The uniformly distributed stresses az , (ry , 

The plate contains through cuts (cracks) and thin undeformable inclusions located along the smooth curves 
Lj = (aj, bj) for j = 1 , . . . ,  kl and j = kl + 1 , . . . ,  k, respectively (Fig. 1); 

k kl k 

j=l  j : l  j = k i + l  
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Fig. 1 

For each curve, the normals n (t) directed toward the right in moving from aj to bj are used. By assumption, 
the cut edges do not contact each other and are subjected to the action of self-balanced, uniformly distributed 
loads P(t) :  

X ~ ( t )  + l Y e ( t )  = :hP(t),  t �9 L 0).  (1) 

The curvilinear inclusions can move as a rigid body: 

u•  + i v + ( t )  = gl( t )  + ig2(t) = G(t) ,  t �9 L(2); G(t) = cj + i . . j t ,  t �9 Lj .  (2) 

Here cj is a complex constant and ej is the unknown or prescribed angle of rotation of the rigid inclusion Lj.  
The plus and minus signs refer to the left and right edges of the cut or inclusion, respectively. 

The stress-strain state of the plane is to be determined. 
F o r m  of  t h e  P o t e n t i a l s .  Let 1.1 and 1.2 be different roots of the characteristic equation [7] a 1 1 1 .  4 - -  

2a161. 3 + (2a12 -1- a66)1. 2 -- 2a261. -t- a22 =- O, in which aij are the strain coefficients from Hooke's law. "~Ve 
assume that  Im 1.1 > 0 and Im 1.2 > 0. 

By analogy with [4], we seek the Lekhnitskii potentials in the form 

(I)~(z~) = (I)~0 + O.1(z~) + O~2(z,,) (u = I, 2). (3) 

Here zv - x + 1*.y and O~0 are known constants determined by the tractions at infinity for a defect-free plane 

[8], 
/ _____ 1 

e~(z~)=- f f -~ i  r . - z .  r .  z .  
L(t) L(2) 

dT. -- (1.. cos ~(r)  - s i n  p(7))ds  -- M . ( v ) d s ,  F(r)  is the angle between the normal rt(r) and the x axis, and 
ds is the differential of the arc length of the curve. 

S y s t e m  o f  I n t e g r a l  E q u a t i o n s  o f  t h e  P r o b l e m .  According to [3, 7], we write the boundary 
conditions (1) and (2) in the form 

a ( t ) ~ ( t l )  + b ( t ) ~ ( t l )  + 0~2 (t2) = F~:(t), t �9 L (1), (4) 

A ( t ) ~ ( t l )  + B ( t ) ~ ( t , )  + O~(t2) = W• t �9 L (2), 

where 
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a ( t )  = ao ~ h ( t ) '  b ( t )  = bo M2(t---'~' ao = n'l*2 - 1.2 bo = 1.2 - # 2 '  

A(t )  = Ao 
fI1 (t) /52ql -- Plq2, B0 /52t~1 - 151q-2 Ml(t)  B( t )  = Bo ~ Ao . . . .  , 

~ I2 ( t ) ' M2 ( t ) ' P2 q2 - p2 q2 p2 q~ - p2 Ct2 

X ~ ( t )  + n 2 Y f ( t )  
$ ~ ( t )  = + (1.2 - # 2 ) M 2 ( t )  ' 

( dg2 ~ 1 
w •  = w ( t )  = ~ ~ - ~2 ds  J (#2q2 - p2q2)M2(t) '  



p,  = a l l #  2 - a l 6 P u  + a12,  q .  = al2#v -t- a22~t~ -1 - a26,  / / =  1, 2. 

Since the loads are self-balanced, we have F+(t) = F - ( t )  = F(t). 
Using representations (3) and the Sochotsky-Plemelj formulas, from (4) we obtain the system of 

singular integral equations for determining the desired densities col(t), a~2(t), #l(t) ,  and p2(t) and the relations 
for cvl(t) and a~2(t) on the cuts and #l(t)  and p2(t) on the rigid inclusions: 

f col( ) 
L(l) L(L~ L(t~ 

+ . /  ~l(7-)K13(t,T)ds + / fitl(T)K14(t,~-)ds = f ; * ( t ) ,  t E L (1), 

L(2) L(21 (5) 

f 
L(2) L(21 L(21 

+ / wl(r)It%.a(t,r)ds+ / Kvl(~-)K24(t,r)ds=J~*(t), t eLt2); 

L(tl L(I) 

a(t)Col(t) + b(t)s (t) + Co2(t) = O. t e L (1), 

A(t)pl(t)  + B(t)fit, (t) + #2(t) = 0, t E L (2), 

where 

f~*(t) = b(t----~ - 7ri ~1o + ~1o + ~ (~2o , t e L(1); 

~il~'(t) .[-4(t) 1 - ] L(2)" 
f,~*(t) - B(t) - rn [ ~ - ~  ~10 + (I)10 -'1- ~ g220 , t E 

Here, the kernels K/j (t, T) are regular. 
We supplement the system by the equations 

l c o l ( r ) d r l = 0  ( j = l  . . . . .  ]~1), l / - t l (T)  dT-l~---0 ( j = k l + l  . . . . .  k), (7) 
J L~ Lj 

which are, respectively, the conditions for single-valued displacements in tracing the contours of each cut and 
the conditions of vanishing of the principal vector of the forces acting on each rigid inclusion. 

The desired angles of rotation of the rigid inclusions in the loaded plate are determined from the 
condition that  the principal moment of the forces acting on each rigid inclusion must vanish. Using the 
relations [8] 

M = 2Re E F ~ ( z ~ ) -  z~p~(z.) , O~ = "~z.' ~ = dz , '  
v=l 

we write this condition in the form 

2 R e { / ( T , - T 2 A o - , 2 B o ) # 1 ( - z ) d r l } = O  ( j = k , + l , . . . , k ) .  (8) 

Lj 
Thus, system (5)-(8) serves to determine the densities Col(t), cz2(t), #l(t) ,  and t~2(t). 

N u m e r i c a l  So lu t ion .  Using the parametrized equations of the curves Lj = {t = 7J(~), 
E [-1,  1]} and introducing the notation 
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TABLE 1 

�9 K~ (a)/(pV"~-R) ' K~(a)l(pV~-R) 

a P r e s e n t  work D a t a  of  [1] P r e sen t  work D a t a  of  [1] 

0 

~'/12 

~r/6 
7r/4 
:r/3 

5~r/12 

:r/2 

--0.157 10 

- 0 . 1 2 2  00 

- 0 . 0 7 4  20 

--0.026 64 

0.008 00 

0.020 48 

0.007 38 

- -0 .15710  

- 0 . 1 2 2  00 

- 0 . 0 7 4  24 

--0.026 66 

0.008 00 

0.020 46 

0 .00737  

0.035 73 

0.093 23 

0.105 70 

0.069 76 

- 0 . 0 0 4  91 

--0.098 32 

- 0 . 1 8 5  50 

0.035 73 

0.093 23 

0.105 70 

0.069 77 

- 0 . 0 0 4  91 

--0.098 34 

- 0 . 1 8 5 5 0  

= = x~ - 

#l( rJ (~))  : Xj(~) ----- X~ - ~ 2  

we reduce system (5)-(8) to the canonical system of integral equations 

k 1 

§ 

1 

- 1  

1 

where the function K {  j (~, rl) has Cauchy-type singularities. 

( j  ~_ l_ . . . . .  k l ) ,  

( j  = k l  + 1 . . . . .  k ) ,  

= f j ( ~ )  ( j = l  . . . . .  k), 

(j  = 1 , . . . , k ) ,  

( j  = kl § 1 . . . . .  k), 

The  system is solved by the scheme of [3] with the use of quadratures. Then the potentials and stresses 
can be determined with specified accuracy at any point of the plate [7] and the stress-intensity factors K1 
and/x'2 can be calculated at the tips of cracks and inclusions [3]: 

2 

u----1 0=o o=o 

Here r and 0 are the polar coordinates with the pole located at the tip and the polar axis directed along the 
tangent to the curve, an = 0.5(ax § ay) § 0.5(~rx - %)  cos 2~ + "rzy sin 2~, and ~'n = -0 .5(ax  - %)  sin 2~ + 
Txy cos 2z2 (p is the angle between the normal to the curve at its tip and the x axis). 

E x a m p l e s  o f  C a l c u l a t i o n s .  Below, we consider calculation results obtained for the stress-intensity 
factors at the tips of cuts and undeformable inclusions in isotropic and anisotropic (orthotropic) plates 
subjected to uniaxial extension. The  following materials are considered: isotropic material for E = 720 GPa  
and ~, = 0.25 (No. 1), anisotropic composite for E1 = 780 GPa, El~E2 = 3, G = 120 GPa, and ~, = 0.25 
(No. 2), graphite-epoxy composite for E1 = 276.1 GPa,  El~E2 = 25, G = 5.52 GPa, and ~ = 0.25 (No. 3), 
and glass-epoxy composite for E1 = 53.84 GPa, El~E2 = 3, G = 8.63 GPa, and v = 0.25 (No. 4). Here E, 
El ,  and E2 are the elastic moduli, G is the shear modulus, and ~ is the Poisson's ratio. In the calculations, 
the "weak anisotropy," which is characterized by the ratio El~E2 = 0.9996, was introduced to model the 
isotropic material. 

Figures 2-4 and Table 1 show the stress-intensity factors K1 and K2 at the tips of a rigid inclusion 
shaped like a semicircular arc as a function of the angle a ,  which characterizes the position of this inclusion 
in the plate upon uniaxial extension. 
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Figure 2 shows calculation results for anisotropic material No. 2 for the following two cases: 1) the 
principal direction of the anisotropy coincides with the x direction (solid curves); 2) the principal direction 
of the anisotropy coincides with the y direction (dashed curves). The results in Fig. 3 refer to material 
Nos. 1 and 3 (dashed and solid curves, respectively). It follows from Figs. 2 and 3 that,  for any c~, the 
stress-intensity factors depend heavily on the anisotropy parameters and the angle between the anisotropy 
axis and the direction of the tensile load at infinity. 

In Fig. 4, the difference between the stress-intensity factors in the problem considered and in the 
problem in which the rotation of an inclusion is not allowed is plotted against c~. The principal direction of 
the anisotropy coincides with the x direction. The dashed curves refer to the dependences AKl(a)/(pv/'~'R) 
(the lower curve) and the coinciding dependences AIf2(a)/(pv/"~'-R), AtQ(b)/(R~), and AK2(b)/(p~) 
(the upper curve) for isotropic material No. 1, solid curves 1-4 refer to AI<l(a)/(pv/'~'R), AK2(a)/(p~), 
AK1 (b) / (p~) ,  and AK2(b)/(pv'-~'R), respectively, for anisotropic material No. 3. The symmetry which is 
typical of isotropic materials is not observed here. 

In Table 1, we compare the approximate values of the stress-intensity factors for isotropic material 
No. 1 (see Fig. 3) with those calculated by the exact formula given in [1] for several values of a.  It is clear 
from Table 1 that  the proposed method, in which the concept of "weak anisotropy" is used, can be applied 
to studying the stress-strain state in isotropic plates. 

The stress-intensity factors at the tips of a rectilinear cut of length 2l (solid curves) and a rigid inclusion 
shaped like a semicircumference of radius R = 1 whose center lies on the straight line passing along the cut 
(dashed curves) as a function of the distance d are shown in Fig. 5 for anisotropic material No. 4. The plane 
is subjected to uniaxial extension. One can see that  the cut and the inclusion exert a negligible effect on each 
other for d/l > 3, i.e., when the distance between the circumference center and the nearest cut tip is greater 
than the cut length. 

For material No. 4, Fig. 6 shows the stress-intensity factors KI and/s  at the tips of a rectilinear cut 
of length 21 (solid curves) and a rigid inclusion shaped like a circumference arc (dot-and-dashed curves) as 
a function of the central angle 20 (as the angle 0 changes from 0 to 7r/2, the shape of the inclusion changes 
from a linear segment to a semicircular arc). The dashed curves show the factors K1 and K2 versus the angle 
20 for a single rigid inclusion. 

It is noteworthy that,  for an isotropic material, Berezhnitskii et al. [1] proposed approximate formulas 
for calculating the stress-intensity factors at the tips of a pair of mutually perpendicular objects, namely, a 
rectilinear crack and an inclusion, in the form of an expansion in powers of the small parameter A = 2lid. 
However, a numerical analysis has shown that,  for A ~< 1/2, the objects can already be treated as isolated 
objects by virtue of the large distance between them (for solitary objects, the values of the factors K1 and 
K2 differ by 2% or more). 

In summary, the proposed method allows one to obtain quantitative and qualitative estimates of the 
stress-strain and limit states of plates with cracks and thin rigid inclusions. 
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